AMBERLITE™ FPC22 H
Food Grade Strong Acid Cation Exchanger

For Sweetener Deashing Applications and Biopharmaceutical Applications

FOOD PROCESSING
AMBERLITE FPC22 H has been specially designed for the deashing of liquid sweeteners streams. It has been designed with an optimized crosslinking content to offer superior balance of stability, operating capacity and protein removal. AMBERLITE FPC22 H has been used successfully worldwide for the deashing of sweeteners from a variety of starch sources including corn and wheat starches. AMBERLITE FPC22 H has been sized such that it can be fixed in both fixed beds, moving bed and mixed bed equipment. When used in combination with AMBERLITE FP weakly basic anionic exchange resins, it yields a superior quality sweetener in both ash content and color. AMBERLITE FPC22 H is also recommended for use with AMBERLITE FPA91 Cl in polishing mixed bed applications to removes trace contaminants that can cause odors, off-flavors and color stability problems with stored syrups. These include weak organic acids, nitrogen containing compounds and the removal of HMF.

BIOPHARMACEUTICAL PROCESSING
AMBERLITE FPC22 H is a macroreticular, strong acid, cation exchange resin well adapted to the capture of semi synthetic peptides.

AMBERLITE FPC22 H has been designed with an optimized crosslinking content to offer superior balance of stability, operating capacity, and protein removal. Its high degree of porosity allows proteinaceous material to be both effectively removed from biostreams and regenerated from the resin.

PROPERTIES AND SUGGESTED OPERATING CONDITIONS
AMBERLITE FPC22 H is a premium grade, macroreticular, strong acid, cation exchange resin composed of sulfonic acid exchange sites on a crosslinked polystyrene matrix. Its optimum degree of crosslinking imparts superior stability to the macroreticular structure of the resin giving it excellent resistance to chemical oxidation and to breakdown from mechanical, thermal or osmotic shock.

PROPERTIES
Matrix __ Crosslinked polystyrene
Functional groups ________________________________ Sulfonic acid
Physical form ____________________________________ Light grey beads
Ionic form as shipped _____________________________ H +
Total exchange capacity[1] __________________________ ≥ 1.7 eq/L (H+ form)
Moisture holding capacity[1] ________________________ 52 to 58 % (H+ form)
Shipping weight__________________________________ 780 g/L
Harmonic mean size ______________________________ 0.600 - 0.800 mm
Fines content[2] __________________________________ < 0.300 mm : 1.0 % max
Maximum reversible swelling ________________________ Na+ → H+ : 10 %

[1] Contractual value
[2] Test methods available upon request

SUGGESTED OPERATING CONDITIONS
<table>
<thead>
<tr>
<th>Property</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maximum operating temperature</td>
<td>135 °C</td>
</tr>
<tr>
<td>Minimum bed depth</td>
<td>700 mm</td>
</tr>
<tr>
<td>Service flow rate</td>
<td>5 to 20 BV* / h</td>
</tr>
<tr>
<td>Regenerants</td>
<td>HCl</td>
</tr>
<tr>
<td>Regenerant Flow rate (BV/h)</td>
<td>2 to 4</td>
</tr>
<tr>
<td>Regenerant Concentration (%)</td>
<td>4 to 10</td>
</tr>
<tr>
<td>Regenerant Level (g/Lr)</td>
<td>45 to 150</td>
</tr>
<tr>
<td>Minimum contact time</td>
<td>30 minutes</td>
</tr>
<tr>
<td>Slow rinse</td>
<td>2 BV at regeneration flow rate</td>
</tr>
<tr>
<td>Fast rinse</td>
<td>2 to 4 BV at service flow rate</td>
</tr>
</tbody>
</table>

* 1 BV (Bed Volume) = 1 m³ solution per m³ resin
FOOD PROCESSING

As governmental regulations vary from country to country, it is recommended that potential users seek advice from their Rohm and Haas representative in order to determine the best resin choice, optimum operating and regeneration conditions.

HYDRAULIC CHARACTERISTICS

Figure 1 shows the bed expansion of AMBERLITE FPC22 H as a function of backwash flow rate and water temperature.

![Figure 1: Bed Expansion](image1)

Figure 2 shows the pressure drop data for AMBERLITE FPC22 H as a function of service flow rate and viscosity of the solution to be treated.

Conversion Factors:
- 1 kPa/m equals 0.0442 psi/ft
- 1 m/h equals 0.41 USgpm/ft²

HYDRAULIC CHARACTERISTICS

Figure 2 shows the pressure drop data for AMBERLITE FPC22 H as a function of service flow rate and viscosity of the solution to be treated.

Conversion Factors:
- 1 kPa/m equals 0.0442 psi/ft
- 1 m/h equals 0.41 USgpm/ft²

Rohm and Haas Company makes no warranties either expressed or implied as to the accuracy of appropriateness of this data and expressly excludes any liability upon Rohm and Haas arising out of its use. We recommend that the prospective users determine for themselves the suitability of Rohm and Haas materials and suggestions for any use prior to their adoption. Suggestions for uses of our products of the inclusion of descriptive material from patents and the citation of specific patents in this publication should not be understood as recommending the use of our products in violation of any patent or as permission or license to use any patents of the Rohm and Haas Company. Material Safety Data Sheets outlining the hazards and handling methods for our products are available on request.