Purolite®

A513

Polystyrenic Macroporous, Type II

Strong Base Anion Resin, Chloride form, High Porosity

TYPICAL PHYSICAL & CHEMICAL CHARACTERISTICS:

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Polymer Structure</td>
<td>Macroporous polystyrene crosslinked with divinylbenzene</td>
</tr>
<tr>
<td>Appearance</td>
<td>Spherical Beads</td>
</tr>
<tr>
<td>Functional Group</td>
<td>Type II Quaternary Ammonium</td>
</tr>
<tr>
<td>Ionic Form</td>
<td>Cl(^-) form</td>
</tr>
<tr>
<td>Total Capacity</td>
<td>1 eq/L (21.8 Kgr/ft(^3)) (Cl(^-) form)</td>
</tr>
<tr>
<td>Moisture Retention</td>
<td>55 - 63 % (Cl(^-) form)</td>
</tr>
<tr>
<td>Particle Size Range</td>
<td>300 - 1200 (\mu m)</td>
</tr>
<tr>
<td>< 300 (\mu m) (max.)</td>
<td>1 %</td>
</tr>
<tr>
<td>Uniformity Coefficient (max.)</td>
<td>1.7</td>
</tr>
<tr>
<td>Reversible Swelling, Cl(^-) → OH(^-) (max.)</td>
<td>10 %</td>
</tr>
<tr>
<td>Specific Gravity</td>
<td>1.07</td>
</tr>
<tr>
<td>Shipping Weight (approx.)</td>
<td>660 - 710 g/L (41.2 - 44.4 lb/ft(^3))</td>
</tr>
<tr>
<td>Temperature Limit</td>
<td>100 °C (212.0 °F) (Cl(^-) form)</td>
</tr>
<tr>
<td>Temperature Limit</td>
<td>35 °C (95.0 °F) (OH(^-) form)</td>
</tr>
</tbody>
</table>

ADVANTAGES

- High operating capacity
- High porosity
- High regeneration efficiency
- Excellent resistance to osmotic and thermal shock
- High reversible sorptive capacity

TYPICAL PACKAGING

- 1 ft\(^3\) Sack
- 25 L Sack
- 5 ft\(^3\) Drum (Fiber)
- 1 m\(^3\) Supersack
- 42 ft\(^3\) Supersack

PRINCIPAL APPLICATIONS

- Demineralization - Industrial

REGULATORY APPROVALS

- IFANCA Halal Certified

Purolite®

Polystyrenic Macroporous, Type II Strong Base Anion Resin, Chloride form, High Porosity

Lenntech™

Water Treatment Solutions
Hydraulic Characteristics

PRESSURE DROP

The pressure drop across a bed of ion exchange resin depends on the particle size distribution, bed depth, and voids volume of the exchange material, as well as on the flow rate and viscosity of the influent solution. Factors affecting any of these parameters—such as the presence of particulate matter filtered out by the bed, abnormal compressibility of the resin, or the incomplete classification of the bed—will have an adverse effect, and result in an increased head loss. Depending on the quality of the influent water, the application and the design of the plant, service flow rates may vary from 10 to 40 BV/h.

BACKWASH

During up-flow backwash, the resin bed should be expanded in volume between 50 and 70% for at least 10 to 15 minutes. This operation will free particulate matter, clear the bed of bubbles and voids, and reclassify the resin particles ensuring minimum resistance to flow. When first putting into service, approximately 30 minutes of expansion is usually sufficient to properly classify the bed. It is important to note that bed expansion increases with flow rate and decreases with influent fluid temperature. Caution must be taken to avoid loss of resin through the top of the vessel by over expansion of the bed.

PRESSURE DROP ACROSS RESIN BED

![Graph showing pressure drop across resin bed vs. linear velocity.]

BACKWASH EXPANSION OF RESIN BED

![Graph showing backwash expansion vs. linear velocity.]

Lenntech
info@lenntech.com Tel. +31-152-610-900
www.lenntech.com Fax. +31-152-616-289