Overview
Copper heat-exchange coils, used in every Recold Fluid Cooler and Evaporative Condenser, provide many distinct advantages.

Primary Benefits
- Half the corrosion rate of carbon steel in closed systems, translates into potentially longer product life
- Seven times greater thermal conductivity than carbon steel, allows for smaller equipment size and less equipment weight
- Easier system circuit changes or repairs, with no welding required
- Greener product

Benefit Detail
Longer Equipment Life:
- Copper provides superior corrosion resistance, extending equipment life
- Copper maintains system efficiency better with time
- Coils can be drained as often as necessary

Greater Thermal Efficiency:
- Thermal conductivity of copper is more than seven times that of carbon steel, enhancing heat transfer
- Smaller equipment size
- Lower equipment weight

Adapted from Standards for Corrosion Rates, Bennett P. Boffardi, Ph.D., FNACE
Benefit Detail

Easier to work with:
- Copper can be brazed, unlike steel which has to be welded
- Copper coils can easily be circuited to separate multiple loads within the same unit if desired

Green material:
- Recyclable at the end of its useful life, potentially resulting in a higher salvage value per pound than steel
- Copper is naturally bacteriostatic (inhibits bacteria growth)
- Less process fluids required because less heat transfer surface is needed for the same amount of cooling

History
- Recold has manufactured heat exchange equipment serving refrigeration, HVAC, and industrial applications for over 75 years. For the best value in evaporative cooling equipment, insist on a Recold heat transfer coil made from copper.

Key Contacts
- Refrigeration applications: Mike Lloyd
 mike.lloyd@spx.com
- HVAC applications: Jon Walker
 jon.walker@spx.com

Internal coil volume typical of a 100 ton forced-draft fluid cooler