Hydro Multi-E
Grundfos Hydro Multi-E booster systems with 2 or 3 CR(I)E or CME pumps
Table of contents

1. **Introduction** 3
 Benefits 3

2. **Product data** 4
 Performance range 4
 Type key 6
 Operating conditions 6

3. **Construction** 7
 Diaphragm tank 7
 Environmental considerations 7

4. **Installation** 8
 Mechanical installation 8
 Electrical installation 8

5. **Control of Hydro Multi-E** 9
 Control options 9
 Control modes 10

6. **Functions** 11
 Overview of functions 11
 External fault signal 12

7. **Sizing** 13
 Flow 13
 Head 14
 Inlet pressure 14
 Understanding the curve charts 15

8. **Performance curves and technical data** 17
 Curve conditions 17

9. **Optional equipment** 38
 Dry-running protection 38
 Emergency operation 38

10. **Accessories** 39
 Level switch 39
 R100 remote control 39
 CIU communication interface units 39

11. **Further product documentation** 40
 WebCAPS 40
 WinCAPS 41
1. Introduction

Grundfos Hydro Multi-E booster systems are designed for the transfer and pressure boosting of clean water in places such as:
- blocks of flats
- hotels
- industry
- hospitals
- schools.

Grundfos Hydro Multi-E booster systems consist of two or three Grundfos CRE, CRIE, CME-A or CME-I pumps connected in parallel and mounted on a common base frame provided with all the necessary fittings.

As standard, the Hydro Multi-E is supplied with a pressure switch as dry-running protection. A level switch is available on request.

When delivered, the Grundfos Hydro Multi-E booster system is factory-tested and ready for operation.

Benefits

Plug-and-pump solution
On delivery, the Hydro Multi-E is assembled, tested and ready to pump as soon as it is connected to the water and power supplies and the pumps have been primed.

Perfect constant-pressure control
The speed-controlled pumps are perfectly controlled and adjusted by the Hydro Multi-E to deliver the correct pressure at the required flow.

User-friendliness
The numerical interface of the Hydro Multi-E makes it one of our most simple booster systems to control and operate.

Reliability
The Grundfos CR(I)E pumps are known for their reliability and long life. The controller is protected inside the CR(I)E pump, and this has proven to be a very reliable solution.

Low energy consumption and reduced noise level
All three-phase motors are efficiency class IE2 or better.
CRE and CRIE pumps with three-phase motors are all IE3-compliant.
The IEC 60034-30 standard defines and harmonises worldwide the efficiency classes IE1, IE2 and IE3 for low-voltage, three-phase motors from 0.75 to 375 kW.
IE1: standard efficiency (comparable to EFF2)
IE2: high efficiency (comparable to EFF1)
IE3: premium efficiency.

Grundfos IE3 motors comply with the EISA2007 legislation in the USA and are ahead of the EC requirements laid down by the EuP Directive.
This also affects the noise level of the motors.
In electric motors, the cooling fan is normally the main source of noise. Thanks to their higher efficiency, IE3 motors require less cooling air to maintain the motor temperature. This allows for a smaller cooling fan and consequently less noise.
2. Product data

Performance range

Fig. 2 Performance range
Fig. 3 Performance range

Note: CME-A are cast-iron pumps for Hydro Multi-E/G-versions.
Type key

<table>
<thead>
<tr>
<th>Example</th>
<th>Hydro Multi-E /G 2 CRE 1-7 3 x 400/230 V</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type range</td>
<td></td>
</tr>
<tr>
<td>Subgroup</td>
<td></td>
</tr>
<tr>
<td>Manifold material: []: Stainless steel /G: Galvanised steel</td>
<td></td>
</tr>
<tr>
<td>Number of pumps: 2 or 3</td>
<td></td>
</tr>
<tr>
<td>Pump type</td>
<td></td>
</tr>
<tr>
<td>Supply voltage</td>
<td></td>
</tr>
</tbody>
</table>

Operating conditions

Liquid temperature: 0 °C to +60 °C.
Ambient temperature: 0 °C to +40 °C.

Minimum inlet pressure

Hydro Multi-E with CRE pumps

The minimum inlet pressure H in metres head required to avoid cavitation in the pump is calculated as follows:

\[
H = p_b \times 10.2 - NPSH - H_f - H_v - H_s
\]

\(p_b\) = Barometric pressure in bar.
(Barometric pressure can be set to 1 bar.)
In closed systems, \(p_b\) indicates the system pressure in bar.

\(NPSH\) = Net Positive Suction Head in metres head.
The NPSH value can be read from the NPSH curve at the highest flow the individual pump will be delivering.

\(H_f\) = Friction loss in suction manifold in metres head at the highest flow the individual pump will be delivering.

\(H_v\) = Vapour pressure in metres head.

\(H_s\) = Safety margin of min. 0.5 metres head.

Hydro Multi-E with CME pumps

Hydro Multi-E systems with CME pumps always require a positive inlet pressure both during start-up and operation.

Maximum inlet pressure

All pumps, with the exception of those mentioned below, are constructed to handle an inlet pressure corresponding to the maximum operating pressure.

<table>
<thead>
<tr>
<th>Maximum 8 bar</th>
<th>Maximum 10 bar</th>
</tr>
</thead>
<tbody>
<tr>
<td>CR(I)E 10-3</td>
<td>CR(I)E 3-15</td>
</tr>
<tr>
<td>CR(I)E 10-4</td>
<td>CR(I)E 5-16</td>
</tr>
<tr>
<td>CR(I)E 10-5</td>
<td>CR(I)E 10-9</td>
</tr>
<tr>
<td>CR(I)E 15-2</td>
<td>CR(I)E 15-7</td>
</tr>
<tr>
<td>CR(I)E 15-3</td>
<td>CR(I)E 10-9</td>
</tr>
<tr>
<td>CR(I)E 20-2</td>
<td>CR(I)E 15-7</td>
</tr>
</tbody>
</table>

Maximum operating pressure

The maximum operating pressure of Hydro Multi-E is 10 bar. For systems with the pumps mentioned below, however, the maximum operating pressure is 16 bar.

- CME-I 5-6
- CME-I 5-8
- CR(I)E 1-15
- CR(I)E 3-15
- CR(I)E 5-16
- CR(I)E 10-9
- CR(I)E 15-7

The total of inlet pressure and the pressure when the pump is running against a closed valve must not exceed the maximum system pressure.
3. Construction

Fig. 4 Hydro Multi-E with 2 CRE pumps

Fig. 5 Hydro Multi-E with 2 CME pumps

The Hydro Multi-E is mounted on a common base frame.
The following is fitted on the suction side:
• a suction manifold.
• an isolating valve.
• a pressure switch for dry-running protection.
The following is fitted on the discharge side:
• a non-return valve.
• an isolating valve.
• a pressure gauge.
• a pressure transmitter.
• a diaphragm tank.
• a stainless-steel discharge manifold.

The manifolds of systems with CRE, CRIE or CME-I pumps are made of stainless steel (EN/DIN 1.4401 or EN/DIN 1.4571).
The manifolds of systems with CME-A are made of electro-galvanised steel.
The Hydro Multi-E is fitted with an on/off switch for the mains supply.

Diaphragm tank
To ensure optimum operation the tank needs to be precharged with pressure. Calculation of precharge pressure:
Precharge pressure = 0.7 x setpoint
The diaphragm tank precharge pressure must be measured in a pressureless system.
We recommend to refill the tank with nitrogen.

Environmental considerations
Grundfos manufactures its motors and other products with a high degree of consideration for the environment in respect of materials, production methods, energy-saving operation and recycling of as many materials as possible.
The Grundfos A/S manufacturing company
• is certified as environmentally friendly in accordance with ISO 14001.
• is approved in accordance with European certification standard EMAS.
• holds an ISO 9001 certificate.

CE marking
Hydro Multi-E booster systems on the European market are CE-marked.

<table>
<thead>
<tr>
<th>Pos.</th>
<th>Description</th>
<th>Quantity</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Isolating valve</td>
<td>2 per pump</td>
</tr>
<tr>
<td>2</td>
<td>Suction manifold</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>Base frame</td>
<td>1</td>
</tr>
<tr>
<td>4</td>
<td>Non-return valve</td>
<td>1 per pump</td>
</tr>
<tr>
<td>5</td>
<td>Discharge manifold</td>
<td>1</td>
</tr>
<tr>
<td>6</td>
<td>Pressure transmitter</td>
<td>1</td>
</tr>
<tr>
<td>7</td>
<td>Pressure gauge</td>
<td>1</td>
</tr>
<tr>
<td>8</td>
<td>Diaphragm tank</td>
<td>1</td>
</tr>
<tr>
<td>9</td>
<td>Pump</td>
<td>2 or 3</td>
</tr>
<tr>
<td>10</td>
<td>Breaker cabinet</td>
<td>1</td>
</tr>
<tr>
<td>11</td>
<td>Dry-running protection</td>
<td></td>
</tr>
</tbody>
</table>

The Hydro Multi-E is fitted with an on/off switch for the mains supply.
4. Installation

Mechanical installation
A Hydro Multi-E booster system must be installed in a well-ventilated room to ensure sufficient cooling of the pumps. Hydro Multi-E is not suitable for outdoor installation.

Place the booster system in such a way that there is sufficient clearance around it for the operator to be able to work freely.

Enclosure class: IP54.
Insulation class: F.

Motor cooling
To ensure adequate cooling of motor and electronics, the following must be observed:
• Place the Hydro Multi-E in a well-ventilated room.
• The temperature of the cooling air must not exceed 40 °C.
• Motor cooling fins, holes in fan cover and fan blades must be kept clean.

Pipework
The pipes connected to the booster system must be of adequate size. Fit expansion joints in the suction and discharge manifolds to avoid resonance. The pipes are to be connected to the suction and discharge manifolds.

The booster system should be tightened up prior to start-up.

We recommend to fit pipe supports both on the suction and the discharge side.

The booster system should be positioned on an even and solid surface, for example a concrete floor or foundation. If the booster system is not fitted with vibration dampers, it must be bolted to the floor or foundation.

Electrical installation
The electrical connection and protection should be carried out in accordance with local regulations.
• The Hydro Multi-E must be correctly earthed.
 Note: 4.0 to 5.5 kW motors must be connected to especially reliable/sturdy earth connections due to an earth leakage current above 3.5 mA.
• The pump requires no external motor protection.
 The motor incorporates thermal protection against slow overloading and blocking (IEC 34-11: TP 211).
• When the pump is switched on via the mains, the pump will start after approx. 5 seconds.

Note: The number of starts and stops via the mains supply must not exceed 4 times per hour.

<table>
<thead>
<tr>
<th>Pos.</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Expansion joint</td>
</tr>
<tr>
<td>2</td>
<td>Pipe support</td>
</tr>
</tbody>
</table>

Expansion joints and pipe supports are not included in a standard booster system.
5. Control of Hydro Multi-E

Control options
Communication with Hydro Multi-E is possible by means of the following:
• a building management system
• a remote control (Grundfos R100)
• a control panel
• external control systems, GSM or GRM.

Building management system
Communication with the Hydro Multi-E is possible even though the operator is not present near the Hydro Multi-E. Communication is enabled by having connected the Hydro Multi-E to a building management system allowing the operator to monitor and change control modes and setpoint settings of the Hydro Multi-E.

R100 remote control
The Grundfos R100 remote control is available as an accessory.
The R100 communicates with the first pump of the Hydro Multi-E via infrared light. During communication, the R100 must be pointed at the control panel on the pump terminal box.

Control panel
The control panel on the Hydro Multi-E terminal box makes it possible to change the setpoint settings manually.

For further information about control options of Hydro Multi-E, please see the "Grundfos E-pumps" data booklet available on www.grundfos.com (WebCAPS).
Control modes

Hydro Multi-E is suitable for applications where you want to control the pressure after the booster system, irrespective of the flow.

Signals of pressure changes in the piping system are transmitted continuously from the sensor to the Hydro Multi-E. The pump responds to the signals by adjusting its performance up or down to compensate for the pressure difference between the actual and the desired pressures. As this adjustment is a continuous process, a constant pressure is maintained in the piping system.

In constant-pressure mode, the Hydro Multi-E maintains a preset pressure after the booster system, irrespective of the flow.

To meet the flow requirements of the system in the most efficient way, the Hydro Multi-E automatically calculates the optimum number of running pumps and cuts pumps in or out accordingly.
6. Functions

Overview of functions

<table>
<thead>
<tr>
<th>Functions</th>
<th>Hydro Multi-E</th>
</tr>
</thead>
<tbody>
<tr>
<td>Setting via control panel</td>
<td></td>
</tr>
<tr>
<td>Setpoint</td>
<td>●</td>
</tr>
<tr>
<td>Start/stop</td>
<td>●</td>
</tr>
<tr>
<td>Max. curve</td>
<td>●</td>
</tr>
<tr>
<td>Reading via control panel</td>
<td></td>
</tr>
<tr>
<td>Setpoint</td>
<td>●</td>
</tr>
<tr>
<td>Operating indication</td>
<td>●</td>
</tr>
<tr>
<td>Fault indication</td>
<td>●</td>
</tr>
<tr>
<td>Setting via the R100</td>
<td></td>
</tr>
<tr>
<td>Setpoint</td>
<td>●</td>
</tr>
<tr>
<td>Start/stop</td>
<td>●</td>
</tr>
<tr>
<td>Max. curve</td>
<td>●</td>
</tr>
<tr>
<td>Control mode</td>
<td>●</td>
</tr>
<tr>
<td>PI-controller</td>
<td>●</td>
</tr>
<tr>
<td>Stop function</td>
<td>●</td>
</tr>
<tr>
<td>Reading via the R100</td>
<td></td>
</tr>
<tr>
<td>Setpoint</td>
<td>●</td>
</tr>
<tr>
<td>Operating indication</td>
<td>●</td>
</tr>
<tr>
<td>Pump status</td>
<td>●</td>
</tr>
</tbody>
</table>

Connection to building management system

The Hydro Multi-E has inputs for bus communication. The system can be controlled and monitored via these inputs from a building management system or other external control systems.

External signals

<table>
<thead>
<tr>
<th>Inputs</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Sensor</td>
<td>Fitted</td>
</tr>
<tr>
<td>External fault</td>
<td>●</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Outputs</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Signal relay</td>
<td>●</td>
</tr>
</tbody>
</table>
Low-flow detection

The "low-flow detector" checks the flow regularly by reducing the speed for a short time, thus checking the change in pressure. If there is no or a small change in pressure, the pump will detect a low flow.

When the pump detects a low flow, the speed will be increased until the stop pressure (actual setpoint +0.5 x ΔH) is reached and the pump stops. When the pressure has fallen to the start pressure (actual setpoint -0.5 x ΔH), the pump will restart.

ΔH indicates the difference between start and stop pressures.

Fig. 12 Start and stop pressures

ΔH is factory-set to 10 % of actual setpoint. ΔH can be set within the range from 5 % to 30 % of actual setpoint.

The Hydro Multi-E is fitted with a diaphragm tank of an appropriate size to accommodate the operation in low flow. The precharge pressure must be 0.7 x actual setpoint.

External fault signal

The system has a digital input for external fault signals. The digital input has been factory-set to external fault and will be active in closed condition.
The digital function is used for dry-running protection.
Sizing

To ensure that the system is operating as efficiently as possible, it is important that the system is sized so that the performance meets the requirements of the application.

Flow

The total consumption and the required maximum flow rate depend on the application in question. The required maximum flow can be calculated by means of the table below which is based on statistical data.

<table>
<thead>
<tr>
<th>Consumer</th>
<th>Unit</th>
<th>Q_{year}</th>
<th>Consumption period d</th>
<th>Q_{day}</th>
<th>fd*</th>
<th>Q(m)_{day}</th>
<th>ft**</th>
<th>Max. flow rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>Residence building</td>
<td>Residence (2.5 persons)</td>
<td>183</td>
<td>365</td>
<td>0.5</td>
<td>1.3</td>
<td>0.65</td>
<td>1.7</td>
<td>0.046</td>
</tr>
<tr>
<td>Office building</td>
<td>Employee</td>
<td>25</td>
<td>250</td>
<td>0.1</td>
<td>1.2</td>
<td>0.12</td>
<td>3.6</td>
<td>0.018</td>
</tr>
<tr>
<td>Shopping centre</td>
<td>Employee</td>
<td>25</td>
<td>300</td>
<td>0.08</td>
<td>1.2</td>
<td>0.1</td>
<td>4.3</td>
<td>0.018</td>
</tr>
<tr>
<td>Supermarket</td>
<td>Employee</td>
<td>80</td>
<td>300</td>
<td>0.27</td>
<td>1.5</td>
<td>0.4</td>
<td>3.0</td>
<td>0.05</td>
</tr>
<tr>
<td>Hotel</td>
<td>Bed</td>
<td>180</td>
<td>365</td>
<td>0.5</td>
<td>1.5</td>
<td>0.75</td>
<td>4.0</td>
<td>0.125</td>
</tr>
<tr>
<td>Hospital</td>
<td>Bed</td>
<td>300</td>
<td>365</td>
<td>0.8</td>
<td>1.2</td>
<td>1.0</td>
<td>3.0</td>
<td>0.12</td>
</tr>
<tr>
<td>School</td>
<td>Pupil</td>
<td>8</td>
<td>200</td>
<td>0.04</td>
<td>1.3</td>
<td>0.065</td>
<td>2.5</td>
<td>0.007</td>
</tr>
</tbody>
</table>

* fd: Maximum consumption factor per day.
** ft: Maximum consumption factor per hour.

Example: Hotel with 540 beds

Number of beds: n.

Total annual consumption: Q_{year} \times n.

Consumption period: d.

Average consumption per day: \(\frac{Q_{year} \times n}{d} \).

Daily maximum consumption: Q(m)_{day} = fd \times Q_{day}.

Required maximum flow per hour: Q_{max} = \text{Max. flow rate/hour} \times \text{number of beds}.

Calculation

\[n = 540 \text{ beds}. \]
\[Q_{year} \times n = 180 \times 540 = 97,200 \text{ m}^3/\text{year}. \]
\[d = 365 \text{ days/year}. \]
\[\frac{Q_{year} \times n}{d} = \frac{97,200}{365} = 266.3 \text{ m}^3/\text{day}. \]
\[Q(m)_{day} = fd \times Q_{day} = 1.5 \times 266.3 = 399.4 \text{ m}^3/\text{day}. \]
\[Q_{max} = \text{Max. flow rate/hour} \times \text{number of beds} = 0.125 \times 540 = 67.5 \text{ m}^3/\text{h}. \]
Head

The required discharge pressure, p_{set}, of the Hydro Multi-B can be calculated from the following formula:

$$p_{set} = p_{tap(min)} + p_f + \left(\frac{h_0}{10.2}\right)$$

$$p_{boost} = p_{set} - p_{in(min)}$$

Key

- p_{set} = Required discharge pressure [bar].
- $p_{tap(min)}$ = Required minimum pressure at the highest tapping point [bar].
- p_f = Total pipe friction loss [bar].
- h_{max} = Height from booster discharge port to highest tapping point [metres].
- $p_{in(min)}$ = Minimum inlet pressure [bar].
- p_{boost} = Required boost [bar].

Example

- $p_{tap(min)} = 2$ bar
- $p_f = 1.2$ bar
- $h_{max} = 41.5$ metres
- $p_{in(min)} = 2$ bar
- $p_{set} = 2 + 1.2 + \left(\frac{41.5}{10.2}\right) = 7.3$ bar
- $p_{boost} = 7.3 - 2 = 5.3$ bar

Inlet pressure

If the system has a positive inlet pressure, it must be taken into consideration to ensure that the total pressure in the system does not exceed the maximum operating pressure of the system.

Optional equipment and accessories

The Hydro Multi-E can be fitted with equipment for communication, dry-running protection, emergency operation, etc. See sections 9. Optional equipment, page 38, and 10. Accessories, page 39, for more details.
Understanding the curve charts

The x-axis, showing the flow rate (Q) in m³/h, is common to all the curves, whereas the y-axis, showing the head (H) in metres, has been adapted to the individual pump type. Three curves are shown on the charts. The systems are only available as 2- or 3-pump systems. The first curve shows the performance of the individual pump types.

Fig. 14 Understanding the curve charts
Example: How to select a system

- A head of 45 m is required.
 The pump type best meeting this specification is found by means of the y-axis (e.g. CR(I)E 10-6).
 Draw a rightward, horizontal line from the head required.

- A flow rate of 18 m³/h is required.
 Now draw an upward, vertical line from the specified flow. The intersection of the two lines gives the number of pumps required for the system (two CR(I)E 10-6).

Only systems whose operating ranges lie within the hatched area of the example should be selected.

Fig. 15 Example of how to select a system
8. Performance curves and technical data

Curve conditions
The curves on pages 18 to 36 are subject to these guidelines:

• Performance measurement is made at a water temperature of 20 °C.
• Test liquid: Pure water.
• The curves describe the pump mean values.
• The curves should not be used as guarantee curves.
• Curve tolerance: ISO 9906, Annex A.
• The curves apply to a kinematic viscosity of 1 mm²/s (1 cSt).
• The conversion between head H (m) and pressure p (kPa) has been made for water with a density of ρ = 1000 kg/m³.
Hydro Multi-E with CR(I)E 1-X

Performance curves and technical data
Hydro Multi-E with CR(I)E 1-X

Performance curves and technical data

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>CR(I)E 1-7</td>
<td>0.37</td>
<td>3.7</td>
<td>2.6</td>
<td>Single-phase motor 3 x 400 V, PE</td>
<td>-</td>
<td>-</td>
<td>8</td>
<td>R</td>
<td>2</td>
<td>790</td>
<td>650</td>
<td>600</td>
<td>590</td>
<td>120</td>
</tr>
<tr>
<td>2</td>
<td>CR(I)E 1-11</td>
<td>0.55</td>
<td>5.3</td>
<td>3.8</td>
<td>Single-phase motor 3 x 400 V, PE</td>
<td>-</td>
<td>-</td>
<td>8</td>
<td>R</td>
<td>2</td>
<td>790</td>
<td>650</td>
<td>600</td>
<td>660</td>
<td>120</td>
</tr>
<tr>
<td>2</td>
<td>CR(I)E 1-15</td>
<td>0.75</td>
<td>7.2</td>
<td>4.9</td>
<td>Single-phase motor 3 x 400 V, PE</td>
<td>-</td>
<td>-</td>
<td>12</td>
<td>R</td>
<td>2</td>
<td>830</td>
<td>650</td>
<td>600</td>
<td>780</td>
<td>120</td>
</tr>
</tbody>
</table>

1) Motor [kW] is the power per pump.
2) Max. IN [A] applies to the current for the specific Hydro Multi-E at a specific voltage (230 or 400 V).
3) Max. I0 [A] applies to single-phase MGE motors. The value of max. I0 [A] never exceeds the value of max. IN [A].
Performance curves and technical data

Hydro Multi-E with CR(I)E 3-X

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>CR(I)E3-5</td>
<td>0.37</td>
<td>3.7</td>
<td>2.6</td>
<td>3 x 400 V. PE</td>
<td>-</td>
<td>-</td>
<td>8 R</td>
<td>2</td>
<td>790</td>
<td>650</td>
<td>600</td>
<td>550</td>
<td>120</td>
<td>1170</td>
<td>63</td>
</tr>
<tr>
<td>3</td>
<td></td>
<td>0.37</td>
<td>4.6</td>
<td>2.6</td>
<td>3 x 400 V. PE</td>
<td>-</td>
<td>-</td>
<td>8 R</td>
<td>2</td>
<td>790</td>
<td>650</td>
<td>920</td>
<td>550</td>
<td>120</td>
<td>1170</td>
<td>63</td>
</tr>
<tr>
<td>2</td>
<td>CR(I)E3-7</td>
<td>0.55</td>
<td>5.3</td>
<td>3.8</td>
<td>3 x 400 V. PE</td>
<td>-</td>
<td>-</td>
<td>8 R</td>
<td>2</td>
<td>790</td>
<td>650</td>
<td>600</td>
<td>590</td>
<td>120</td>
<td>1170</td>
<td>86</td>
</tr>
<tr>
<td>3</td>
<td></td>
<td>0.55</td>
<td>6.5</td>
<td>3.8</td>
<td>3 x 400 V. PE</td>
<td>-</td>
<td>-</td>
<td>8 R</td>
<td>2</td>
<td>790</td>
<td>650</td>
<td>920</td>
<td>590</td>
<td>120</td>
<td>1170</td>
<td>86</td>
</tr>
<tr>
<td>2</td>
<td>CR(I)E3-10</td>
<td>0.75</td>
<td>8.8</td>
<td>4.9</td>
<td>3 x 400 V. PE</td>
<td>-</td>
<td>-</td>
<td>8 R</td>
<td>2</td>
<td>790</td>
<td>650</td>
<td>600</td>
<td>690</td>
<td>120</td>
<td>1170</td>
<td>94</td>
</tr>
<tr>
<td>3</td>
<td></td>
<td>0.75</td>
<td>8.8</td>
<td>4.9</td>
<td>3 x 400 V. PE</td>
<td>-</td>
<td>-</td>
<td>8 R</td>
<td>2</td>
<td>790</td>
<td>650</td>
<td>920</td>
<td>690</td>
<td>120</td>
<td>1170</td>
<td>94</td>
</tr>
<tr>
<td>2</td>
<td>CR(I)E3-15</td>
<td>1.1</td>
<td>10.1</td>
<td>7.2</td>
<td>3 x 400 V. PE</td>
<td>-</td>
<td>-</td>
<td>12 R</td>
<td>2</td>
<td>830</td>
<td>650</td>
<td>600</td>
<td>780</td>
<td>120</td>
<td>1370</td>
<td>102</td>
</tr>
<tr>
<td>3</td>
<td></td>
<td>1.1</td>
<td>12.4</td>
<td>7.2</td>
<td>3 x 400 V. PE</td>
<td>-</td>
<td>-</td>
<td>12 R</td>
<td>2</td>
<td>830</td>
<td>650</td>
<td>920</td>
<td>780</td>
<td>120</td>
<td>1370</td>
<td>146</td>
</tr>
</tbody>
</table>

1) **Motor [kW]** is the power per pump.
2) **Max. IN [A]** applies to the current for the specific Hydro Multi-E at a specific voltage (230 or 400 V).
3) **Max. I0 [A]** applies to single-phase MGE motors. The value of max. I0 [A] never exceeds the value of max. IN [A].
Hydro Multi-E with CR(I)E 5-X

Performance curves and technical data
Performance curves and technical data

<table>
<thead>
<tr>
<th>Number of pumps</th>
<th>Pump type</th>
<th>Motor [kW]</th>
<th>Max. IN [A]</th>
<th>Max. I0 [A]</th>
<th>SUPPLY VOLTAGE</th>
<th>MANIFOLD</th>
<th>CONNECTIONS</th>
<th>DIAPHRAGM TANK</th>
<th>NET WEIGHT [kg]</th>
<th>SHIP. VOL. [m³]</th>
</tr>
</thead>
<tbody>
<tr>
<td>2 CR(I)E 5-4</td>
<td>0.55</td>
<td>5.3</td>
<td>3.8</td>
<td>-</td>
<td>3 x 400 V, PE. N</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>18 R 2</td>
<td>830 650 570 1170</td>
</tr>
<tr>
<td>3 CR(I)E 5-5</td>
<td>0.75</td>
<td>7</td>
<td>4.9</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>18 R 2</td>
<td>830 650 645 1170</td>
</tr>
<tr>
<td>2 CR(I)E 5-8</td>
<td>1.1</td>
<td>10.1</td>
<td>7.2</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>18 R 2</td>
<td>830 650 725 1170</td>
</tr>
<tr>
<td>3 CR(I)E 5-10</td>
<td>1.5</td>
<td>6.4</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>18 R 2</td>
<td>830 650 845 1370</td>
</tr>
<tr>
<td>2 CR(I)E 5-16</td>
<td>2.2</td>
<td>9.9</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>12 R 2</td>
<td>830 650 1045 1570</td>
</tr>
<tr>
<td>3 CR(I)E 5-16</td>
<td>2.2</td>
<td>13.3</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>12 R 2</td>
<td>830 650 1045 1570</td>
</tr>
</tbody>
</table>

1) Motor [kW] is the power per pump.
2) Max. IN [A] applies to the current for the specific Hydro Multi-E at a specific voltage (230 or 400 V).
3) Max. I0 [A] applies to single-phase MGE motors. The value of max. I0 [A] never exceeds the value of max. IN [A].
Hydro Multi-E with CR(I)E 10-X

Performance curves and technical data

Hydro Multi-E
CR(I)E 10-9
ISO 9906 Annex A

Hydro Multi-E
CR(I)E 10-6

CR(I)E 10-4

CR(I)E 10-3
Performance curves and technical data

Hydro Multi-E with CR(I)E 10-X

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>CR(I)E 10-3</td>
<td>1.1</td>
<td>10.1</td>
<td>7.2</td>
<td>Single-phase motor 3 x 400 V, PE</td>
<td>N</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>25</td>
<td>R 2 1/2</td>
<td>985</td>
<td>800</td>
</tr>
<tr>
<td>3</td>
<td></td>
<td>1.1</td>
<td>12.4</td>
<td>7.2</td>
<td>Three phase motor 3 x 400 V, PE</td>
<td>N</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>25</td>
<td>R 2 1/2</td>
<td>985</td>
<td>800</td>
</tr>
<tr>
<td>2</td>
<td>CR(I)E 10-4</td>
<td>1.5</td>
<td>6.4</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>25</td>
<td>R 2 1/2</td>
<td>985</td>
<td>800</td>
</tr>
<tr>
<td>3</td>
<td></td>
<td>1.5</td>
<td>9.5</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>25</td>
<td>R 2 1/2</td>
<td>985</td>
<td>800</td>
</tr>
<tr>
<td>2</td>
<td>CR(I)E 10-6</td>
<td>2.2</td>
<td>6.9</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>25</td>
<td>R 2 1/2</td>
<td>985</td>
<td>800</td>
</tr>
<tr>
<td>3</td>
<td></td>
<td>2.2</td>
<td>13.3</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>25</td>
<td>R 2 1/2</td>
<td>985</td>
<td>800</td>
</tr>
<tr>
<td>2</td>
<td>CR(I)E 10-9</td>
<td>3</td>
<td>11.9</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>12</td>
<td>R 2 1/2</td>
<td>985</td>
<td>800</td>
</tr>
<tr>
<td>3</td>
<td></td>
<td>3</td>
<td>17.9</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>12</td>
<td>R 2 1/2</td>
<td>985</td>
<td>800</td>
</tr>
</tbody>
</table>

1) Motor [kW] is the power per pump.
2) Max. IN [A] applies to the current for the specific Hydro Multi-E at a specific voltage (230 or 400 V).
3) Max. I0 [A] applies to single-phase MGE motors. The value of max. I0 [A] never exceeds the value of max. IN [A].
Hydro Multi-E with CR(I)E 15-X

Performance curves and technical data

Hydro Multi-E
CR(I)E 15-7
ISO 9906 Annex A
Performance curves and technical data

Hydro Multi-E with CR(I)E 15-X

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>CR(I)E 15-2</td>
<td>2.2</td>
<td>8.9</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>33</td>
<td>1225</td>
<td>950</td>
<td>720</td>
<td>810</td>
<td>160</td>
<td>1370</td>
<td>189</td>
</tr>
<tr>
<td>3</td>
<td>CR(I)E 15-3</td>
<td>2.2</td>
<td>13.3</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>33</td>
<td>1225</td>
<td>950</td>
<td>720</td>
<td>810</td>
<td>160</td>
<td>1370</td>
<td>274</td>
</tr>
<tr>
<td>3</td>
<td>CR(I)E 15-5</td>
<td>3</td>
<td>11.9</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>33</td>
<td>1225</td>
<td>950</td>
<td>720</td>
<td>870</td>
<td>160</td>
<td>1370</td>
<td>200</td>
</tr>
<tr>
<td>2</td>
<td>CR(I)E 15-2</td>
<td>4</td>
<td>15.6</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>33</td>
<td>1225</td>
<td>950</td>
<td>720</td>
<td>870</td>
<td>160</td>
<td>1370</td>
<td>237</td>
</tr>
<tr>
<td>3</td>
<td>CR(I)E 15-3</td>
<td>4</td>
<td>23.4</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>33</td>
<td>1225</td>
<td>950</td>
<td>720</td>
<td>870</td>
<td>160</td>
<td>1370</td>
<td>334</td>
</tr>
<tr>
<td>3</td>
<td>CR(I)E 15-7</td>
<td>5.5</td>
<td>21.1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>12</td>
<td>1200</td>
<td>950</td>
<td>720</td>
<td>1140</td>
<td>160</td>
<td>1570</td>
<td>268</td>
</tr>
<tr>
<td>3</td>
<td>CR(I)E 15-7</td>
<td>5.5</td>
<td>31.7</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>12</td>
<td>1200</td>
<td>950</td>
<td>1040</td>
<td>1140</td>
<td>160</td>
<td>1570</td>
<td>393</td>
</tr>
</tbody>
</table>

1) Motor [kW] is the power per pump.
2) Max. IN [A] applies to the current for the specific Hydro Multi-E at a specific voltage (230 or 400 V).
3) Max. I0 [A] applies to single-phase MGE motors. The value of max. I0 [A] never exceeds the value of max. IN [A].
Hydro Multi-E with CR(I)E 20-X

Performance curves and technical data

Hydro Multi-E
CR(I)E 20-5
ISO 9906 Annex A

CR(I)E 20-3

CR(I)E 20-2

Hydro Multi-E
with CR(I)E 20-X
Performance curves and technical data

Hydro Multi-E
with CR(I)E 20-X

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>CR(I)E20-2</td>
<td>2.2</td>
<td>8.9</td>
<td>-</td>
<td>Single-phase motor 3 x 400 V, PE</td>
<td>-</td>
<td>33</td>
<td>DN 80</td>
<td>1225</td>
<td>950</td>
<td>720</td>
<td>805</td>
<td>160</td>
<td>1370</td>
<td>187</td>
</tr>
<tr>
<td>3</td>
<td></td>
<td>2.2</td>
<td>13.3</td>
<td>-</td>
<td>Three-phase motor 3 x 400 V, PE</td>
<td>-</td>
<td>33</td>
<td>DN 100</td>
<td>1240</td>
<td>950</td>
<td>1040</td>
<td>805</td>
<td>160</td>
<td>1370</td>
<td>274</td>
</tr>
<tr>
<td>2</td>
<td>CR(I)E20-3</td>
<td>4</td>
<td>15.6</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>33</td>
<td>DN 80</td>
<td>1225</td>
<td>950</td>
<td>720</td>
<td>805</td>
<td>160</td>
<td>1370</td>
<td>221</td>
</tr>
<tr>
<td>3</td>
<td></td>
<td>4</td>
<td>23.4</td>
<td>-</td>
<td>Stainless steel</td>
<td>-</td>
<td>33</td>
<td>DN 100</td>
<td>1240</td>
<td>950</td>
<td>1040</td>
<td>805</td>
<td>160</td>
<td>1370</td>
<td>323</td>
</tr>
<tr>
<td>2</td>
<td>CR(I)E20-5</td>
<td>5.5</td>
<td>21.1</td>
<td>-</td>
<td>Galvanized</td>
<td>-</td>
<td>33</td>
<td>DN 80</td>
<td>1225</td>
<td>950</td>
<td>720</td>
<td>1050</td>
<td>805</td>
<td>160</td>
<td>263</td>
</tr>
<tr>
<td>3</td>
<td></td>
<td>5.5</td>
<td>31.7</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>33</td>
<td>DN 100</td>
<td>1240</td>
<td>950</td>
<td>1040</td>
<td>1050</td>
<td>805</td>
<td>160</td>
<td>385</td>
</tr>
</tbody>
</table>

1) Motor [kW] is the power per pump.
2) Max. IN [A] applies to the current for the specific Hydro Multi-E at a specific voltage (230 or 400 V).
3) Max. I0 [A] applies to single-phase MGE motors. The value of max. I0 [A] never exceeds the value of max. IN [A].
Hydro Multi-E with CME 3-5

Performance curves and technical data
Performance curves and technical data

Number of pumps

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>CME-A 3-5</td>
<td>1.1</td>
<td>10.1</td>
<td>7.2</td>
<td>Single-phase motor 3 x 400 V, PE</td>
<td>Stainless steel</td>
<td>8 R 1 1/2</td>
<td>600</td>
<td>190</td>
<td>590</td>
<td>345</td>
<td>510</td>
<td>890</td>
<td>63</td>
<td>0.315</td>
</tr>
<tr>
<td></td>
<td>1.1</td>
<td>12.4</td>
<td>7.2</td>
<td>Three-phase motor 3 x 400 V, PE</td>
<td>Galvanized tank</td>
<td>8 R 1 1/2</td>
<td>600</td>
<td>190</td>
<td>960</td>
<td>345</td>
<td>510</td>
<td>890</td>
<td>96</td>
<td>0.513</td>
</tr>
<tr>
<td>CME-I 3-5</td>
<td>1.1</td>
<td>10.1</td>
<td>7.2</td>
<td>Single-phase motor 3 x 400 V, PE</td>
<td>Stainless steel</td>
<td>8 R 1 1/2</td>
<td>600</td>
<td>155</td>
<td>590</td>
<td>345</td>
<td>530</td>
<td>910</td>
<td>77</td>
<td>0.322</td>
</tr>
<tr>
<td></td>
<td>1.1</td>
<td>12.4</td>
<td>7.2</td>
<td>Three-phase motor 3 x 400 V, PE</td>
<td>Galvanized tank</td>
<td>8 R 1 1/2</td>
<td>600</td>
<td>155</td>
<td>960</td>
<td>345</td>
<td>530</td>
<td>910</td>
<td>108</td>
<td>0.524</td>
</tr>
</tbody>
</table>
Performance curves and technical data

Hydro Multi-E with CME 5-X

Hydro Multi-E
CME 5-4
ISO 9906 Annex A
- CME-A
- CME-I

Hydro Multi-E
CME 5-6

Hydro Multi-E
CME 5-8

Q [m³/h]

p [kPa]

H [m]
Performance curves and technical data

Hydro Multi-E with CME 5-X

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>CME-A 5-4</td>
<td>1.5</td>
<td>6.6</td>
<td>-</td>
<td>18 R 2</td>
<td>605</td>
<td>150</td>
<td>390</td>
<td>605</td>
<td>90</td>
<td>0.418</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td>1.5</td>
<td>9.9</td>
<td>-</td>
<td>18 R 2</td>
<td>605</td>
<td>150</td>
<td>390</td>
<td>605</td>
<td>90</td>
<td>0.660</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>CME-I 5-4</td>
<td>1.5</td>
<td>6.6</td>
<td>-</td>
<td>18 R 2</td>
<td>605</td>
<td>130</td>
<td>390</td>
<td>585</td>
<td>55</td>
<td>0.405</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td>1.5</td>
<td>9.9</td>
<td>-</td>
<td>18 R 2</td>
<td>605</td>
<td>130</td>
<td>390</td>
<td>585</td>
<td>55</td>
<td>0.641</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>CME-A 5-6</td>
<td>2.2</td>
<td>9.2</td>
<td>-</td>
<td>18 R 2</td>
<td>605</td>
<td>185</td>
<td>390</td>
<td>605</td>
<td>90</td>
<td>0.418</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td>2.2</td>
<td>13.8</td>
<td>-</td>
<td>18 R 2</td>
<td>605</td>
<td>185</td>
<td>390</td>
<td>605</td>
<td>90</td>
<td>0.660</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>CME-I 5-6</td>
<td>2.2</td>
<td>9.2</td>
<td>-</td>
<td>12 R 2</td>
<td>610</td>
<td>180</td>
<td>390</td>
<td>585</td>
<td>975</td>
<td>0.378</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td>2.2</td>
<td>13.8</td>
<td>-</td>
<td>12 R 2</td>
<td>610</td>
<td>180</td>
<td>390</td>
<td>585</td>
<td>975</td>
<td>0.598</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>CME-I 5-8</td>
<td>3</td>
<td>12.4</td>
<td>-</td>
<td>12 R 2</td>
<td>650</td>
<td>220</td>
<td>400</td>
<td>595</td>
<td>985</td>
<td>0.407</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td>3</td>
<td>18.6</td>
<td>-</td>
<td>12 R 2</td>
<td>650</td>
<td>220</td>
<td>400</td>
<td>595</td>
<td>985</td>
<td>0.643</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1) Single-phase motor 2 x 400 V, PE-N
2) Three-phase motor 3 x 400 V, PE
3) Supply voltage 3 x 400 V, PE-N
Performance curves and technical data

Hydro Multi-E with CME 10-X

Hydro Multi-E
CME 10-2
ISO 9906 Annex A

CME-A
CME-I

Hydro Multi-E
CME 10-3

CME 10-2

CME-A
CME-I

Hydro Multi-E with CME 10-X
Number of pumps

<table>
<thead>
<tr>
<th>Pump-type</th>
<th>Motor 1)</th>
<th>Max. IN 2)</th>
<th>Max. I0 3)</th>
<th>Supply voltage Manifold</th>
<th>Diaphragm tank [litres]</th>
<th>Connections</th>
</tr>
</thead>
<tbody>
<tr>
<td>Single-phase motor</td>
<td>3 x 400 V. PE. N</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Three-phase motor</td>
<td>3 x 400 V. PE</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Specifications

<table>
<thead>
<tr>
<th></th>
<th>[kW]</th>
<th>[A]</th>
<th>[A]</th>
<th>[litres]</th>
<th>[mm]</th>
<th>[mm]</th>
<th>[mm]</th>
<th>[mm]</th>
<th>[kg]</th>
<th>[m³]</th>
</tr>
</thead>
<tbody>
<tr>
<td>2 CME-A 10-2</td>
<td>2.2</td>
<td>9.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>2.2</td>
<td>13.8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2 CME-I 10-2</td>
<td>4</td>
<td>16.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>4</td>
<td>24</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Hydro Multi-E with CME 15-X

Performance curves and technical data

Hydro Multi-E
CME 15-1
ISO 9906 Annex A

CME-A
CME-I

CME 15-2

Q [m³/h]

Q [l/s]
Performance curves and technical data

Hydro Multi-E with CME 15-X

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>CME-A 15-1</td>
<td>2.2</td>
<td>9.2</td>
<td></td>
<td>Single-phase motor 3 x 400 V PE N</td>
<td></td>
<td>33 DN 80</td>
<td>630 165 720 500 650 1210</td>
<td>90 0.549</td>
</tr>
<tr>
<td>3</td>
<td>CME-I 15-1</td>
<td>2.2</td>
<td>9.2</td>
<td></td>
<td>Three-phase motor 3 x 400 V PE</td>
<td></td>
<td>33 DN 80</td>
<td>660 175 720 500 660 1230</td>
<td>104 0.584</td>
</tr>
<tr>
<td>2</td>
<td>CME-A 15-2</td>
<td>4</td>
<td>16.2</td>
<td></td>
<td>Stainless steel</td>
<td></td>
<td>33 DN 80</td>
<td>700 165 720 510 660 1270</td>
<td>107 0.640</td>
</tr>
<tr>
<td>3</td>
<td>CME-I 15-2</td>
<td>4</td>
<td>24.3</td>
<td></td>
<td>Galvanised</td>
<td></td>
<td>33 DN 80</td>
<td>710 165 1070 520 720 1300</td>
<td>161 0.988</td>
</tr>
</tbody>
</table>

1) 3-phase motor 3 x 400 V PE N
2) Single-phase motor 3 x 400 V PE N
3) Three-phase motor 3 x 400 V PE
9. Optional equipment

All optional equipment, if required, must be specified when ordering the Hydro Multi-E booster system, as it must be fitted from factory prior to delivery.

Dry-running protection

Dry-running protection must be installed. The type of dry-running protection to choose is determined by the inlet conditions:

- If the system has an inlet pressure, a pressure switch should be used.
- If the system draws water from a tank, a level switch should be used.

As standard, the Hydro Multi-E is supplied with a pressure switch as dry-running protection.

Emergency operation

The emergency operation feature ensures supply of water in these cases:

- sensor fault
- controller fault (pump 1).

If emergency operation is required, this must be stated when ordering. Then two or three pressure switches will be fitted to the discharge manifold prior to delivery.

<table>
<thead>
<tr>
<th>Emergency operation for</th>
<th>Product number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hydro Multi-E with two pumps</td>
<td>96551260</td>
</tr>
<tr>
<td>Hydro Multi-E with three pumps</td>
<td>96551261</td>
</tr>
</tbody>
</table>

Level switch

<table>
<thead>
<tr>
<th>Product</th>
<th>Product number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Level switch incl. 5 m cable</td>
<td>010749</td>
</tr>
</tbody>
</table>

Fig. 16 Example of system with pressure switch

If instead, a level switch is preferred as dry-running protection, this must be stated when ordering. Then the level switch will be supplied with the booster system.

Fig. 17 Example of system with level switch

Fig. 18 Pressure switches fitted to the manifold
10. Accessories

The following accessories can be ordered separately and fitted or replaced at any time.

Level switch

<table>
<thead>
<tr>
<th>Product</th>
<th>Product number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Level switch incl. 5 m cable</td>
<td>010184</td>
</tr>
</tbody>
</table>

R100 remote control

The R100 is used for wireless communication. The communication takes place via infrared light.

<table>
<thead>
<tr>
<th>Product</th>
<th>Product number</th>
</tr>
</thead>
<tbody>
<tr>
<td>R100</td>
<td>96615297</td>
</tr>
</tbody>
</table>

CIU communication interface units

We offer the following CIU units:

- **CIU 100**
 For communication via LON.

- **CIU 150**
 For communication via Profibus DP.

- **CIU 200**
 For communication via Modbus RTU.

- **CIU 250**
 For wireless communication via GSM, GPRS or SMS.

- **CIU 271**
 For communication via Grundfos Remote Management (GRM).

- **CIU 300**
 For communication via BACnet MS/TP.

Product	**Product number**
Level switch incl. 5 m cable | 010184
R100 | 96615297

Unit type	**Fieldbus protocol**	**Product number**
CIU 100 | LON | 96753735
CIU 150 | Profibus DP | 96753081
CIU 200 | Modbus RTU | 96753082
CIU 250 | GSM/GPRS | 96787106
CIU 271 | GRM | Contact Grundfos.
CIU 300 | BACnet MS/TP | 96893769

For further information about data communication via CIU units and fieldbus protocols, see the CIU documentation available on www.grundfos.com (WebCAPS).

Fig. 19 Grundfos CIU communication interface unit

The CIU units enable communication of operating data, such as measured values and setpoints, between CR(I)E pumps and a building management system. The CIU unit incorporates a 24-240 VAC/VDC power supply module and a CIM module. It can either be mounted on a DIN rail or on a wall.
11. Further product documentation

WebCAPS

WebCAPS is a Web-based Computer Aided Product Selection program available on www.grundfos.com. WebCAPS contains detailed information on more than 220,000 Grundfos products in more than 30 languages.

Information in WebCAPS is divided into six sections:

- Catalogue
- Literature
- Service
- Sizing
- Replacement
- CAD drawings.

Catalogue

Based on fields of application and pump types, this section contains the following:

- technical data
- curves (QH, Eta, P1, P2, etc.) which can be adapted to the density and viscosity of the pumped liquid and show the number of pumps in operation
- product photos
- dimensional drawings
- wiring diagrams
- quotation texts, etc.

Literature

This section contains all the latest documents of a given pump, such as:

- data booklets
- installation and operating instructions
- service documentation, such as Service kit catalogue and Service kit instructions
- quick guides
- product brochures.

Service

This section contains an easy-to-use interactive service catalogue. Here you can find and identify service parts of both existing and discontinued Grundfos pumps. Furthermore, the section contains service videos showing you how to replace service parts.
Sizing

This section is based on different fields of application and installation examples and gives easy step-by-step instructions in how to size a product:

• Select the most suitable and efficient pump for your installation
• Carry out advanced calculations based on energy consumption, payback periods, load profiles, life cycle costs, etc.
• Analyse your selected pump via the built-in life cycle cost tool
• Determine the flow velocity in wastewater applications, etc.

Replacement

In this section you find a guide to selecting and comparing replacement data of an installed pump in order to replace the pump with a more efficient Grundfos pump. The section contains replacement data of a wide range of pumps produced by other manufacturers than Grundfos.

Based on an easy step-by-step guide, you can compare Grundfos pumps with the one you have installed on your site. When you have specified the installed pump, the guide will suggest a number of Grundfos pumps which can improve both comfort and efficiency.

CAD drawings

In this section, it is possible to download 2-dimensional (2D) and 3-dimensional (3D) CAD drawings of most Grundfos pumps.

These formats are available in WebCAPS:

2-dimensional drawings:
• .dwg, wireframe drawings
• .dxf, wireframe drawings

3-dimensional drawings:
• .stp, solid drawings (with surfaces)
• .eprt, E-drawings

WinCAPS

WinCAPS is a Windows-based Computer Aided Product Selection program containing detailed information on more than 220,000 Grundfos products in more than 30 languages.

The program contains the same features and functions as WebCAPS, but is an ideal solution if no internet connection is available.

WinCAPS is available on CD-ROM and updated once a year.

Subject to alterations.