AMBERLITE™ IRA743
Chelating Resin

AMBERLITE IRA743 is a unique ion exchange resin specifically designed and used to remove boric acid and borate from water, magnesium brine or other solutions under a variety of conditions.

The presence of boron compounds, even in very small concentration, is frequently a concern in potable and irrigation water, in ultrapure water as used in the semiconductor industry, and in other chemical processes. Boric acid can be removed from water with conventional ion exchange resins, but the exchange is not selective and therefore impractical. The selectivity of AMBERLITE IRA743 for boric acid is so high, that removal is very efficient irrespective of the background salinity of the solution.

AMBERLITE IRA743 owes its high selectivity for boric acid to a unique, sugar-like active group. The borate ion makes a very stable complex with the glucamine group, whilst other anions do not react at all.

PROPERTIES

Matrix ____________________________ Macroporous polystyrene
Functional group ____________________ N-Methylglucamine
Physical form _________________________ Beige-coloured beads
Ionic form as shipped ________________ Free Base (FB)
Total capacity _______________________ 0.7 eq/L
Moisture holding capacity ___________ 48 to 54 % (FB form)
Shipping weight _____________________ 700 g/L (49.7 lbs/ft³)
Particle size
Harmonic mean size ________________ 0.500 – 0.700 mm
Uniformity coefficient _______________ 1.6
< 0.500 mm _________________________ 1 % max

SUGGESTED OPERATING CONDITIONS

Maximum operating temperature ___________ 75 °C
Flow rate ____________________________ 4 to 30 BV/h
Regeneration _________________________ Several regeneration procedures are available depending on the application

APPLICATIONS

a. Removal from irrigation water

Boron is known to improve plant growth, but within tight limits: excess boron has a very detrimental effect on agriculture. The usually considered limit is 1 mg/L.

b. Drinking water

For boron removal from drinking water, the use of AMBERLITE PWA10 is recommended.

c. Ultra-pure water

Boron is used as a dopant in the production of semiconductors. Therefore waste water in this industry contains variable amounts of B. However, boron must be totally absent from the water used in certain production steps. AMBERLITE IRA743 can reduce boron concentrations to ng/L (parts per trillion) levels.
d. Removal from waste

Boron is present in ceramic tiles and enamels used to decorate them. These boron compounds can be selectively removed from the waste streams using AMBERLITE IRA743.

e. Purification of magnesium brine

Magnesium is produced by electrolysis. The presence of boron prevents the coalescence of magnesium during the electrolysis of fused Mg salts. The brines must be decontaminated, bringing the B concentration from about 100 to less than 10 mg/L. Another excellent field for the use of AMBERLITE IRA743 which can operate even in a solution with extremely high salt background.

The above applications are examples, and each of them require a specific regeneration procedure. Potential users should contact Rohm and Haas for more details.

LIMITS OF USE

Rohm and Haas manufactures special resins for food processing and potable water applications. As governmental regulations vary from country to country, it is recommended that potential users seek advice from their AMBERLITE representative in order to determine the best resin choice and optimum operating conditions.

HYDRAULIC CHARACTERISTICS

Figure 1 shows the pressure drop data for AMBERLITE IRA743 in water, as a function of service flow rate and water temperature. Pressure drop data are for clean, classified beds which have not been contaminated with suspended solids during the service run. If the bed accumulates solids, the pressure drop will increase. Figure 2 shows the bed expansion of AMBERLITE IRA743, as a function of backwash flow rate and water temperature.