Home > Library > Ozone > Ozone history

History of ozone

Past developments in ozone application

A Dutch chemist called Van Marum was probably the first person to detect ozone gas sensorially. In the description of his experiments, he mentioned the notion of a characteristic smell around his electrifier [1,3].
However, the discovery of ozone was only just mentioned by name decennia later, in a writing of Schönbein that dates back to 1840. This discovery was presented to the University of München. Schönbein had noticed the same characteristc smell during his experiments, that Van Marum had tried to identify earlier. He called this gas 'ozone', which is distracted from ozein; the Greek word for scent. Generally, the discovery of ozone is ascribed to Schönbein. Moreover, Schönbein is mentioned as the first person to research the reaction mechanisms of ozone and organic matter.
After 1840, many studies on the disinfection mechanism of ozone followed. The first ozone generator was manufactured in Berlin by Von Siemens [1,3,6]. This manufacturer also wrote a book about ozone application in water. This caused a number of pilot projects to take place, during which the disinfection mechanism of ozone was researched.
The French chemist Marius Paul Otto (figure 1) received a doctorate at the French University, for his essay on ozone. He was the first person to start a specialized company for the manufacture of ozone installations: 'Compagnie des Eaux et de l’Ozone' [5].

Figure 1: Marius Paul Otto

The first technical-scale application of ozone took place in Oudshoorn, Netherlands, in 1893 [3,5]. This ozone installation was thouroughly studied by French sientists, and another unit was installed in Nice after that (in 1906). Since than, ozone was applied in Nice continuously, causing Nice to be called the 'place of birth of ozone for drinking water treatment'.
In the years prior to World War I, there was an increase in the use of ozone installations in various countries. Around 1916, 49 ozone installations were in use throughout Europe (26 of which were located in France) [3]. However, this increase faltered soon afterwards. This was consequential to research of toxic gases, which evidently lead to the development of chlorine. This disinfectant appeared to be a suitable alternative to ozone, as it did not have the shortcomings in management, such as low applicative guarantee and low yield of ozone generation. Ozone production did not reach its prior level until after World War II. In 1940, the number of ozone installations that were in use worldwide had only grown to 119. In 1977 this number, had increased to 1043 ozone installations. More than half of the installations were located in France [1,3]. Around 1985, the number of applied ozone installations was estimated >2000 [2].

Today, chlorine is still preferred over ozone for water disinfection. However, the last decennia the application of ozone applications did start to increase again. This was caused by the discovery of trihalomethanes (THM) as a harmful disinfection byproduct of chlorine disinfection, in 1973. Consequentially, scientists started looking for alternative disinfectants [5].
Another problem was an increase in disturbing, difficultly removable organic micropollutants in surface waters. These compounds appeared to be oxidized by ozone faster than by chlorine and chlorine compounds.
Furthermore, ozone turned out to deactivate even those microorganisms that develop resistance to disinfectants, such as Cryptosporidium.
Finally, there has been a progress in the abolishment of shortcomings in ozone management.







Lenntech BV

Rotterdamseweg 402 M
2629 HH Delft
The Netherlands

tel: +31 15 261 09 00

fax: +31 15 261 62 89

e-mail: info@lenntech.com











Bookmark and Share